

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

SUPERNOVA SEARCH OPTIMIZATION: APPLICATION TO THE DARK ENERGY SURVEY

J. P. Bernstein¹, R. Kessler^{2,3}, S. Kuhlmann¹, H. Spinka¹ for the Dark Energy Survey Collaboration ¹High Energy Physics Division, Argonne National Lab ²Kavli Institute for Cosmological Physics, U. Chicago ³Dept. of Astronomy & Astrophysics, U. Chicago

> Postdoctoral Research Symposium September 10, 2009 Argonne National Laboratory

Outline

Introduction to cosmology

Dark energy: evidence & alternatives

Summary & conclusions

Fundamental Motivation

Discovering the evolution & ultimate fate of the Universe and determining what constitutes 95% of the Universe!

Have A Slice Of Universe Pie

Courtesy: http://hetdex.org

Dark Energy Requires Fundamental Particle Physics Change

- Motivated U.S. Dept. of Energy to invest in astrophysics
 - proposed major new astrophysics funding
 - comparison: ~\$10M/year previously
- Is it Einstein's vacuum energy?
 - aka, the Cosmological Constant (Λ)
 - best estimate of current theory is off by factor of at least 10⁶⁰
- New fundamental, zero-spin, scalar particle? Predicted in particle physics & inflation models, but nothing like it ever observed directly
- Modified Theory of Gravity: hypothesis that Einsteinian gravity breaks down at large scales?

Quantifying Past & Future Evolution

Observation: Universe is expanding

Evolution depends on energy density ρ

Define: $\Omega = \rho/\rho_{\rm crit}$

ρ_{crit}: matter density required to make the Universe geometrically flat (i.e., shortest distance between two points is a straight line).

Quantifying Cosmology

Theory motivates & data show that Universe has:

$$\Omega_{\text{tot}} = 1$$

Observations indicate matter comprises only 25%:

$$\Omega_{\rm m} = 0.25$$

What makes up the other 75%?

Towards An Answer: Type la Supernovae

Figure courtesy http://csep10.phys.utk.edu/astr162

Thin hydrogen surface layer accumulated on white dwarf through accretion ring

Thermonuclear explosion consumes the entire white dwarf star

Image courtesy http://www.siprep.org/faculty/aokeefe

Example Type la Supernova Spectrum & Light Curve

BRIGHT!

NCG 4526 is ~55 million light years away from Earth ⇒ the light from SN 1994D started traveling towards Earth ~55 million years before 1994!

Type Ia SNe As Standard Candles

$1+z \equiv \lambda_{obs}/\lambda_{emit}$			
$z \equiv redshift$			
λ_{obs} = observed wavelength			
λ_{emit} = emitted wavelength			
NB. distance \propto func(z, Ω)			

Distance modulus:

$$\mu = 5\log_{10}(d/10 \text{ pc})$$

 $d = distance (1 pc = 3.09x10^{16} m)$

mu	distance
25	1 Mpc (Andromeda)
30	10 Mpc
35	100 Mpc
40	1 Gpc
45	10 Gpc (close to Big Bang)

Distant SNe dimmer than predicted for a matter-only Universe!

Discovery:

S. Perlmutter et al., Nature, 391, 51 (1998);

Reiss et al., Astronomical J., 116, 1009 (1998)

Quantitative Framework For Dark Energy

Explanation: expansion of Universe is accelerating due to dark energy that has strongly negative pressure (p_{DE})

Dark energy equation of state: $w = p_{DE}/\rho_{DE}$

Dark energy density today: $\Omega_{\rm DE} = \rho_{\rm DE}/\rho_{\rm crit}$

Default cosmology: w = -1Einstein's cosmological constant (Λ)

Current Constraints

Credit: Kowalski et al. 2008, ApJ, 686, 749

Expansion Revisited

EXPANSION OF THE UNIVERSE

Alternatives to Dark Energy (DE)?

- Modified Gravity (MG)?
 - recall: hypothesis gravity breaks down at large scales
 - conflicts with strong evidence for dark <u>matter</u> (DM)
 - however, could have dark matter + MG instead of DE, e.g.
 - DM to explain galactic rotation curves and cluster dynamics
 - MG to explain dimness of SN la
 - in either case, must result in observed expansion
 - currently very difficult to distinguish effects of DE and MG
- Hubble Bubble
 - hypothesis that local expansion rate deviates from average
 - suggestive evidence exists
 - more study required
- Any alternative must explain different & independent DE evidence

DES will survey 5000 square degree of sky and provide new 500Mpixel CCD camera (DECAM) for Blanco 4m telescope at the Cerro Tololo Inter-American Observatory (CTIO), Chile, in exchange for 525 survey nights over 5 years starting in 2011.

ANL DES group: Joe Bernstein, Jim Grudzinski, Vic Guarino, Steve Kuhlmann, Hal Spinka, Rich Talaga, Allen Zhao.

DE investigation via 4 independent probes:

- 1) Galaxy angular clustering
- 2) Weak gravitational lensing
- 3) Baryon acoustic oscillations
- 4) SN Ia distances

DES is expected to observe ~10⁸ galaxies & will obtain redshifts for the South Pole Telescope survey.

SNANA: SuperNova ANAlysis package for DES

- R. Kessler (U. Chicago), J. P. Bernstein, S. Kuhlmann, & H. Spinka (ANL)
- Public URL: http://www.sdss.org/supernova/SNANA.html
- Also used by Sloan Digital Sky Survey & Large Synoptic Survey Telescope
- Software for simulating (both la & non-la) and fitting SN light curves
- Uses various models (e.g., MLCS2k2, SALT-II, stretch, etc.)
- Simulation steps
 - Generate rest-frame luminosity and fluctuations
 - Apply host galaxy dust extinction
 - Make redshift correction
 - Apply Milky Way dust map based on trajectory
 - Apply CTIO weather history effects, sky noise including angular separation of the Moon, and detector effects

DES Number of Type la Supernovae SNANA Forecast

Type Ia SN Selection Bias & SNANA Forecasted Hubble Diagram

Core Collapse Supernova Characteristics

- Type lbc
 - have light curves most similar to Type la light curves
 - Type Ib spectra show helium lines, Type Ic spectra do not
- Type IIP: Hydrogen lines + plateau in late time light curve
- Type IIL: Hydrogen lines + linear decline in late time light curve
- Type IIn: Hydrogen lines + exhibit narrow emission lines

DES Contamination of the Type Ia Sample SNANA Forecast

Assume 100% host galaxy spectra (Spectrometric Redshifts)			
Туре	# of SNe pass default cuts	# of SNe pass default cuts + fit. prob. > 0.1	
Ia	3066	2954	
Ibc	486	183	
IIP	775	10	
IIL	112	10	
IIn	1417	26	

Default cuts

At least

- 5 total epochs above a very small, but non-zero, signal-to-noise threshold
- 1 epoch before and at least 1 10 days after the *B*-band peak
- 1 filter measurement with a signal-to-noise above 10
- 2 additional filter measurements with a signal-to-noise above 5
- 100,664 total SNe generated, 9344 Type Ia
- About 7% core collapse "contamination" with fit prob. cut > 0.1
 - biases cosmology fit by about 6 standard deviations!
- Fit prob. cut >0.5 reduces contamination to about 2%
 - also reduces bias to less than 2 standard deviations
 - trade off is loss of about 20% of the la sample

Two Component Fit Alternative to Fit Prob. Cut Increase

Summary & Conclusions

- Observations show Universe is composed of 95% weird stuff
 - ~21% dark matter
 - ~74% dark energy
- Dark energy: explanation of dimness of distant supernovae
 - fundamental physics mystery: what is it?
 - default theory
 - Einstein's cosmological constant
 - best model is off by factor of 10⁶⁰
- Supernovae are excellent cosmological tools
- Dark Energy Survey (DES): next step in addressing dark energy
- DES on schedule for first light in 2011

The Blanco & The Milky Way

Image courtesy Mike Fanelli

The Blanco telescope dome at Cerro Tololo, Chile. Single, non-composite image taken using a 2Kx2K scientific CCD temporarily mated to a custom camera. 20 sec exposure, 40mm f/4 lens, starlight only. Credit: Roger Smith/NOAO/AURA/NSF